

ME5106 Online Presentation:

Aeroacoustics Simulation and Experimental Study based on IDDES/LES and On-the-fly FW-H Method:

Taking Cooling Fans as an Example

Presenter:

Huanxia WEI A0285164Y (M.Sc. M.E.)

08. April 2024

Contents

- Theoretical Basis
- Computational Aeroacoustics (CAA)
- **Experimental Study**
- Compare and Discussion
- Conclusion

Reference

Backup:

- IDDES governing methods
- LES governing methods

Theoretical Basis: Aeroacoustics Basis and Acoustic Analogy

Aeroacoustics Basis.

Source Type.

Turbulent noise sources (quadrupoles), rotor surface pulsating force noise sources (dipoles), and aerodynamic noise sources caused by rotor motion (monopoles)

Acoustic Analogy.

- Kind of analytical method for flow-induced noise. Obtain acoustic information from flow fields.
- [1], methods: Lighthill Main **Ffowcs** Williams-Hawkings (FW-H) [2], Powell [3], etc. based on different terms.
- FW-H equation was used in this CAA case in STAR-CCM+.

Theoretical Basis: CFD Platform and IDDES

Platform for CFD.

Software. CFD platform used is Siemens STAR-CCM+*, which is a part of Siemens Simcenter, providing a multiple-condition CFD Hardware. Case physics model: IDDES based on k-ε SST.

Hardware. The simulations were configured on a personal computer (Windows, 4C-8T), and computations were conducted on firstly a CFD server (Ubuntu, 128C-256T), later on Sugon Cluster (5Nodes, 320C-640T).

*License from PACE center, Tongji University, at which I am a part-time RA.

IDDES.

Improved Delayed Detached Eddy Simulation (IDDES) [4] based on k- ω SST was used for this unsteady Computational Aeroacoustics (CAA) simulation.

- Good for vortices and eddies, which are strongly related to aeroacoustics
- Satisfactory computational power need
- Active RANS and LES in different regions
- Combines the advantages of DDES and WMI FS models

Computational Aeroacoustics (CAA): *Model of Fans*

As the CAD model is announced by the original manufacture, it aligns preciously with the corresponding real fans!

Computational Aeroacoustics (CAA): Rigid Body Motion

Computational Aeroacoustics (CAA): Rigid Body Motion

Computational Aeroacoustics (CAA): Rigid Body Motion

Rotating flow region

Static flow region (partly)

Computational Aeroacoustics (CAA): Meshing and Conditions

Why so high mesh number? Results of convergence check.

Computational Aeroacoustics (CAA): Meshing and Conditions

CFD Solver

Stop: 10,000 iterations, 10 iteration per dt

dt = 5e-4 s (first 10000 iter.s, 0.5 s), IDDES

dt = 1e-4 s (last 10000 iterations, 0.1 s), LES

Direct frequency resolution: 5,000 Hz

Boundary

Blades, ground, frame: Wall (no-slip)

Five far boundary: pressure outlet OPa

Rotation region boundary: imprint (internal)

Contact update strategy: per time step

FW-H Model

Mode: On-the-fly (real-time analogy)

Start: t > 0.05 s

FW-H surfaces: blades, ground

FW-H receivers: points (matching exp.)

Initial Conditions

Velocity: 0 m/s

Pressure: 0 Pa

Turbulence intensity: 0.5%

Relaxation Factor: P 0.7, V 0.2, warm-up

Computational Aeroacoustics (CAA): FW-H Configurations

FW-H mode: On-the-fly

FW-H surfaces: fans (blades, framework), wall

FW-H receiver: matching the experimental setups

FW-H solver execution time: 0.5s - 0.6x s

Resolution frequency

Lower range:

1 second / (0.6s - 0.5s) = 10 Hz

Higher range:

 $1 \operatorname{second/dt/2} = 5000 \operatorname{Hz}$

Finally: **10 Hz – 5000 Hz**

Computational Aeroacoustics (CAA): Results – Aerodynamics

Velocity Magnitude

Q-criterion Iso-surface

Pressure (wake)

Pressure (blades)

Computational Aeroacoustics (CAA): Results – Aerodynamics

Computational Aeroacoustics (CAA): Results – Aeroacoustics

Total Surface Term from the fans*

Total Surface Term from the ground surface*

^{*} FW-H receiver at measurement point #3 (0.25m, 0 m, 0.06m).

Computational Aeroacoustics (CAA): Results – Aeroacoustics

Experimental Study: *Equipment*

Name

Measurement Microphone

Model MiniDSP UMIK-1

Output Varies of acoustic data Hot-wire Anemometer

BENETECH GM8903

Velocity (single direction, m/s)

Contactless Tachometer

DT2236C

Revolutions per minute (RPM)

Experimental Study: Setups

^{*} Why not point to the fans? Air flow will affect the precision. For this case, 90-deg calibration file (instead of the general 0-deg one) was loaded, ensuring the reliability of this experiment.

Experimental Study: Results – Fans Position (Outlet)

Experimental Study: Results – Fans Position (Outlet)

Experimental Study: Results – Fans Position (Inlet)

Experimental Study: Results – Fans Position

Experimental Study: Results – Fans RPM

*Measurement point: X=-250mm, Y=120mm, Z=60mm.

Experimental Study: Results – Fans RPM

Blade Passing Frequency (BPF) = RPM / 60 Hz * 9 blades

For this case, RPM = 2100, Therefore, BPF = 315 Hz.

Experimental Study: Results – Fans RPM

Blade Passing Frequency (**BPF**) = RPM / 60 Hz * 9 blades

For this case, RPM = 2100, Therefore, BPF = 315 Hz.

Experimental Study: Results – Different Fans

Slimmer: Arctic P12 Slim PWM PST

120mm × 120mm × 15mm

Baseline: Noctua NF-A12×25 PWM

120mm × 120mm × 25mm

Bigger: Noctua NF-A14 PWM

140mm × 140mm × 25mm

Experimental Study: Results – Different Fans (Same Flow Rate)

Fans Type	Photo	Frequency	SPL – dB	SPL – dB(A)	Velocity
"Baseline"		56.25 dB was a single state of the same of	56.25 dB	39.6 dB	2.76 m/s
"Bigger"		SS. OC dB was a state of the st	55.06 dB	39.7 dB	2.04 m/s
"Slimmer"		So 79 db man and a day of the same of the	56.78 dB *Congrat! Winner of	45.9 dB*	2.80 m/s

^{*}Measurement point: X=120mm, Y=120mm, Z=60mm.

Compare: Between Simulations and Experiments

Conclusion

- Based on $k-\varepsilon$ SST IDDES and on-the-fly FW-H, CAA shows reliable computational results, which generally match the experimental results (for spectrum, error still exists).
- Mid-high rotation rate is the "sweet zone" for cooling fans, demonstrating a balance between aeroacoustics noise (SPL) and performance (air flow rate).
- Significant peaks occur at frequencies that are multiples or fractions of the Blade Passing Frequency (BPF) of the fans.
- The outlet side is dominated by turbulent wall pressure fluctuation (TWPF), while in the inlet region, acoustic wall pressure fluctuation (AWPF) is the leading modal.
- As having higher turbulence intensity, jet wake region has higher TWPF components, exiting the noise, especially at the low-frequency range.
- As for same cooling effect (air flow rate), bigger fans has little better acoustic performance, while slimmer ones are noisier.

References

Cited in Slides

- 1. N. Curle and M.J. Lighthill, *The influence of solid boundaries upon aerodynamic sound*. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1997. **231**
- 2. J.E. Ffowcs Williams, et al., Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1997. **264**.
- 3. A. Powell, Theory of Vortex Sound. The Journal of the Acoustical Society of America, 1964. 36.
- 4. M.S. Gritskevich, et al., Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model. Flow, Turbulence and Combustion, 2012.88.

Referred without citation

- 1. F. Farassat, The Ffowcs Williams-Hawkings Equation Fifteen Years of Research. Aero- and Hydro-Acoustics, 1986.
- 2. Siemens Group, Tutorials for Siemens NX: Aeroacoustics. 2024.
- 3. N. Zhang, H. Shen, H. Yao, Numerical simulation of cavity flow induced noise by LES and FW-H acoustic analogy. Journal of Hydrodynamics, 2010. 22.
- E. Liu, et al., Large Eddy Simulation and FW-H acoustic analogy of flow-induced noise in Elbow pipe. Journal of Computational and Theoretical Nanoscience, 2015. 12.
- 5. V. Strouhal, Ueber eine besondere art der tonerregung. Annalen der Physik und Chemie, 1878. 5.
- 6. H. Oertel, Jr., Wakes behind blunt bodies. Annual Review of Fluid Mechanics, 1990. 22.
- 7. C. H. K. Williamson, Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics, 1996. 28.
- 8. O. Inoue, N. Hatakeyama, Sound generation by a two-dimensional circular cylinder in a uniform flow. Journal of Fluid Mechanics, 2002. 471.
- A. Travin, M. Shur, Detached-Eddy Simulations Pasta Circular Cylinder. Combustion, 2000. 63.

Thank you for your listening!

Huanxia WEI

08. Apr. 2024

Backup: *IDDES Governing Equations*

Governing Equations.

Incompressible N-S equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \tag{1}$$

Momentum conservation equation

$$\begin{split} \frac{\partial(\rho u)}{\partial t} + div(\rho u u) &= -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + S_{u} \\ \frac{\partial(\rho v)}{\partial t} + div(\rho v u) &= -\frac{\partial p}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + S_{v} \\ \frac{\partial(\rho w)}{\partial t} + div(\rho w u) &= -\frac{\partial p}{\partial z} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + S_{w} \end{split}$$
 (2)

Dissipation term introducing IDDES length scale

$$D_k = \rho \frac{k^{\frac{3}{2}}}{l_{IDDES}} \tag{3}$$

IDDES length scale (the switcher)

$$l_{IDDES} = \tilde{f}_d (1 + f_e) l_{RANS} + \left(1 - \tilde{f}_d\right) l_{LES} \tag{4}$$

Grid Correlation

$$\Delta = \min\{\max[C_w \Delta w_{\min_{max}}, \Delta_{max}]\}$$
 (5)

Definitions in Equations.

$$l_{DDES} = \tilde{f}_d l_{RANS} + (1 - \tilde{f}_d) l_{LES} \tag{6}$$

$$l_{WMLES} = \tilde{f}_d (1 + f_e) l_{RANS} + (1 - f_B) l_{LES}$$
 (7)

$$\tilde{f}_d = \max[(1 - f_{dt}), f_B] \tag{8}$$

$$f_{dt} = 1.0 - tanh[(8r_{dt})^3], f_B = min[2exp(-9\alpha^2), 1]$$
 (9)

$$\alpha = 0.25 - \frac{d}{A_{max}} \tag{10}$$

$$f_e = f_{e2} \cdot max[(f_{e1} - 1), 0] \tag{11}$$

$$f_{e1} = \begin{cases} 2 \exp(-11.09\alpha^2); & \alpha \ge 0\\ 2 \exp(-9\alpha^2); & \alpha < 0 \end{cases}$$
 (12)

$$f_{e2} = 1 - \max(f_t, f_l) \tag{13}$$

$$f_t = tanh[(c_t^2 r_{dt})^3], \quad f_l = tanh[(c_l^2 r_{dt})^{10}]$$
 (14)

$$T_{dt} = \frac{v_t}{\left(\sum_{i} \left(\partial u_i\right)^2\right)^{0.5}} \tag{15}$$

$$r_{dl} = \frac{v_l}{\kappa^2 d^2 \max \left(\sum_{i, j} \left(\frac{\partial u_i}{\partial x_j}\right)^2\right)^{0.5}, 10^{-10}}$$

$$\tag{16}$$

Normally, the values of constants are: $C_W = 0.15$, $\kappa = 0.41$, $C_t = 1.87$, $C_1 = 5.00$.

Backup: LES Governing Equations (Incompressible Version)

Governing Equations (Partly).

Filtered N-S equation

$$\frac{\partial \bar{u_i}}{\partial t} + \frac{\partial}{\partial x_j} \left(\overline{u_i u_j} \right) = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial}{\partial x_j} \left(\frac{\partial \bar{u_i}}{\partial x_j} + \frac{\partial \bar{u_j}}{\partial x_i} \right) = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + 2\nu \frac{\partial}{\partial x_j} \bar{S}_{ij}. \tag{1}$$

Filtered Advection Term

$$\overline{u_i u_i} = \tau_{ij} + \overline{u}_i \overline{u}_j \tag{2}$$

Transformed Filtered N-S equation

$$\frac{\partial \bar{u_i}}{\partial t} + \frac{\partial}{\partial x_i} (\bar{u}_i \bar{u}_j) = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + 2\nu \frac{\partial}{\partial x_j} \bar{S}_{ij} - \frac{\partial \tau_{ij}}{\partial x_i}$$
(3)

filtered governing equation for a passive scalar

$$\frac{\partial \overline{\phi}}{\partial t} + \frac{\partial}{\partial x_i} \left(\overline{u}_j \overline{\phi} \right) = \frac{\partial \overline{J_\phi}}{\partial x_i} + \frac{\partial q_j}{\partial x_i}$$
 (4)

Derivations.

Using Einstein notation, the Navier-Stokes equations for an incompressible fluid in Cartesian coordinates are

$$\begin{split} \frac{\partial u_i}{\partial x_i} &= 0 \\ \frac{\partial u_i}{\partial t} &+ \frac{\partial u_i u_j}{\partial x_j} &= -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j \partial x_j}. \end{split}$$

Filtering the momentum equation results in

$$\overline{rac{\partial u_i}{\partial t}} + \overline{rac{\partial u_i u_j}{\partial x_j}} = -\overline{rac{1}{
ho}} rac{\partial p}{\partial x_i} + \overline{
u rac{\partial^2 u_i}{\partial x_j \partial x_j}}.$$

If we assume that filtering and differentiation commute, then

$$rac{\partial ar{u_i}}{\partial t} + \overline{rac{\partial u_i u_j}{\partial x_j}} = -rac{1}{
ho} rac{\partial ar{p}}{\partial x_i} +
u rac{\partial^2 ar{u_i}}{\partial x_j \partial x_j}.$$

This equation models the changes in time of the filtered variables $\bar{u_i}$. Since the unfiltered variables u_i are not

known, it is impossible to directly calculate $\cfrac{\overline{\partial u_i u_j}}{\partial x_j}$. However, the quantity $\cfrac{\partial \bar{u}_i \bar{u}_j}{\partial x_j}$ is known. A substitution is made:

$$\frac{\partial \bar{u_i}}{\partial t} + \frac{\partial \bar{u_i} \bar{u_j}}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial^2 \bar{u_i}}{\partial x_j \partial x_j} - \left(\frac{\partial u_i u_j}{\partial x_j} - \frac{\partial \bar{u_i} \bar{u_j}}{\partial x_j} \right).$$

Let $au_{ij} = \overline{u_i u_j} - \bar{u}_i \bar{u}_j$. The resulting set of equations are the LES equations:

$$\frac{\partial \bar{u_i}}{\partial t} + \bar{u_j} \frac{\partial \bar{u_i}}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} + \nu \frac{\partial^2 \bar{u_i}}{\partial x_j \partial x_j} - \frac{\partial \tau_{ij}}{\partial x_j}.$$