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• Machine learning combined with global sensitivity analysis quantifies
the impact of operating conditions on fuel cell output.

• DRT technology further identifies the underlying mechanisms behind
fuel cell sensitivity to operating conditions by comparing key charac-
teristic peaks.

• The study provides a comprehensive sensitivity analysis, moving from
qualitative to quantitative insights, and further to mechanistic under-
standing.
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Abstract

This study combines Random Forest, Sobol sensitivity analysis, and Distribu-
tion of Relaxation Times (DRT) to investigate how five operating conditions
affect fuel cell performance: stack temperature, humidity, backpressure, cath-
ode stoichiometry, and anode stoichiometry. By integrating partial experi-
mental data with machine learning methods, a global sensitivity analysis is
conducted. The results indicate that fuel cell performance initially increases
and then decreases with rising temperature, backpressure, and humidity,
while showing a strong positive correlation with cathode stoichiometry. An-
ode stoichiometry has a relatively minor effect. Quantitative findings reveal
that at low current densities, temperature (10–25%), humidity (30–40%), and
backpressure ( 30%) are the dominant factors influencing output voltage. As
current density increases, the impact of cathode stoichiometry rises sharply
to over 70%. Utilizing the DRT method, the study provides mechanistic
insights, revealing that mass transport imposes the greatest impedance on
the fuel cell. At low current densities, the fuel cell is primarily influenced by
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water-thermal balance affecting mass transport pathways. At higher current
densities, increased reaction rates make the cell more sensitive to gas supply
conditions, especially cathode stoichiometry. These findings offer valuable
insights for optimizing fuel cell efficiency.

Keywords: Global Sensitivity Analysis, Fuel cell, Operating condition,
Random Forest, Distribution of Relaxation Times

1. Introduction1

With the rise of the green economy, the global energy structure is gradu-2

ally transitioning from fossil fuels to renewable energy sources such as hydro-3

gen, solar, and wind energy Among these, hydrogen energy stands out as one4

of the most promising energy forms for the future [1]. Fuel cells, which can5

convert the hydrogen energy of hydrogen into electrical energy, are character-6

ized by their high efficiency and zero emissions, making them the mainstream7

application of hydrogen energy [2]. Currently, many countries are investing8

heavily in hydrogen research and deploying fuel cell technologies. These ef-9

forts aim to reduce costs, improve production methods, and promote the10

widespread use of hydrogen-powered systems [3, 4, 5].11

The performance of fuel cells is significantly influenced by operational con-12

ditions, which are often complex and varied during actual operation [6, 7].13

Askaripour using a two-phase flow model, identified key factors affecting fuel14

cell performance and two-phase flow characteristics, including inlet humidity,15

the stoichiometric ratio on the anode side, cell pressure and temperature, as16

well as the distribution of heat sources and sinks [8]. For medium to high cur-17

rent densities, fuel cell performance decreases with increasing cell pressure.18

Kahveci et al. found that temperature plays a critical role in the performance19

of proton exchange membrane fuel cells, with performance deteriorating when20

a certain temperature threshold is exceeded [9]. Additionally, both humid-21

ification and heating significantly influence the operational stability of fuel22

cells, primarily by affecting the membrane hydration state [10]. Xing et al.23

reported that an initial increase in the stoichiometric flow ratio enhances24

the limiting current density, but further increases result in diminishing im-25

provements [11]. It is evident that changes in operational conditions have a26

non-linear and often complex impact on fuel cell performance [12, 13]. There-27

fore, establishing a quantitative relationship between operational conditions28

and fuel cell performance remains a challenging task [14, 15]. Fan et al. quan-29
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tified the effects of catalyst layer gradients, operating conditions, and their30

interactions on the performance of PEMFCs using Sobol indices [16]. The31

results indicated that cathode humidity had the greatest impact on output32

performance among the operating parameters. Goshtasbi et al. developed33

a physics-based, two-phase, non-isothermal PEM model and performed sen-34

sitivity quantification analysis of model parameters using a derivative-based35

method [17]. Shao et al. conducted a global sensitivity analysis of the elec-36

trochemical model of fuel cells by employing a Bayesian sparse polynomial37

chaos expansion approach [18]. Zhang et al. achieved multi-objective op-38

timization of PEMFC performance by combining orthogonal experimental39

results with the entropy weight method [19]. Zhou et al. proposed a two-40

dimensional real-time fuel cell modeling approach and conducted a sensitivity41

analysis of input parameters using Sobol indices [20]. It can be observed that42

most of the current quantitative studies rely on physical models for sensitiv-43

ity analysis. However, these models often fail to accurately reflect the real44

operational conditions of fuel cells. There is a lack of research focused on45

the global sensitivity of fuel cell performance to operational conditions under46

actual operating scenarios.47

Furthermore, exploring the internal mechanisms underlying the correla-48

tion between operational conditions and fuel cell performance is also a topic49

of great interest in the field [21, 22]. The Distribution of Relaxation Times50

(DRT) technique has attracted considerable attention in recent years due51

to its ability to effectively interpret the dynamic processes within fuel cells52

without requiring extensive prior knowledge [23, 24, 25]. This method de-53

composes impedance data based on frequency, extracting characteristic peaks54

that are associated with different physical processes within the fuel cell. By55

analyzing these characteristic peaks, researchers can identify key phenom-56

ena such as reaction kinetics and mass transport processes occurring in the57

fuel cell. Weiß et al. were among the first to apply the DRT technique to58

high-temperature fuel cells, successfully identifying seven distinct character-59

istic peaks [26]. Subsequently, Bevilacqua et al. used DRT to investigate60

the effects of anode operating conditions on high-temperature fuel cells, pro-61

viding further insights into the reaction and mass transfer characteristics62

within the cells [27]. Heinzmann et al. extended the application of DRT to63

low-temperature fuel cells, identifying five characteristic peaks and experi-64

mentally validating the physical significance of each peak [28]. Yuan et al.65

further explored the effects of different operating conditions on the variation66

of DRT peaks and successfully applied DRT to fault diagnosis in fuel cells67
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[29, 30]. The primary advantage of the DRT technique is its ability to rapidly68

identify polarization losses without the need for extensive prior knowledge,69

making it particularly suitable for the study and diagnosis of proton exchange70

membrane fuel cells.71

It can be observed that most of the current quantitative studies rely on72

physical models for sensitivity analysis. However, these models often fail73

to accurately reflect the real operational conditions of fuel cells. There is a74

lack of research focused on the global sensitivity of fuel cell performance to75

operational conditions under actual operating scenarios. At the same time,76

sensitivity quantification studies have not been effectively integrated with77

mechanistic research.78

This paper proposes a comprehensive sensitivity analysis framework based79

on the RF-Sobol-DRT method, bridging the gap in previous research by inte-80

grating qualitative, quantitative, and mechanistic studies. Initially, a qualita-81

tive analysis is conducted through controlled variable experiments under dif-82

ferent operating conditions, revealing the nonlinear relationship between op-83

erational parameters and fuel cell performance. Subsequently, a data-driven84

approach, random forest model, is employed to simulate fuel cell voltage be-85

havior under varying conditions. By combining this approach with the Sobol86

index, a novel quantitative analysis is performed to assess the sensitivity of87

fuel cell performance to different operating conditions in real-world scenarios.88

Finally, the results from the DRT under different conditions are compared89

to further explain the findings from both the qualitative and quantitative90

analyses, exploring the underlying mechanisms. The study results provide91

valuable insights into the internal mechanisms of fuel cells and enhance the92

understanding of the sensitivity of performance to operational factors.93

2. Experimental study94

2.1. Experimental setup95

This study uses a fuel cell stack containing three commercial membrane96

electrode assemblies with an effective area of 300 cm2. The platinum loading97

of catalyst is 0.35 mg/cm2 and the thickness of proton exchange membrane98

is 12 µm. The stack utilizes metal bipolar plates, with a straight-channel99

flow field on the cathode side and a serpentine flow field on the anode side,100

featuring an inlet size of 3/8 inches. The stack has been in operation for101

approximately six months and has experienced degradation, making it more102

sensitive to variations in operating conditions.103
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Figure 1: Fuel cell stack and testing equipment

Figure 1 illustrates the test bench setup for a 2 kW fuel cell stack, fea-104

turing an electronic load range of 0 to 600 A and a voltage range of 0.1105

to 40 V. The stack is water-cooled to regulate its stack temperature. The106

test bench utilizes two water circuits: an internal deionized water circuit,107

which humidifies the gas and cools the stack, and an external cooling water108

circuit, which controls the stack temperature through heat exchange with109

the internal deionized water. Gas humidification is achieved through a com-110

bination of bubbling and spraying techniques, while heating tapes are used111

to regulate the intake air temperature. The gas humidity is controlled by112

adjusting the dew point and intake air temperature. The flow rates of hydro-113

gen and air are controlled by high-precision mass flow meters. A diaphragm114

back-pressure valve at the stack outlet adjusts the gas circuit pressure. Ad-115

ditionally, the anode is equipped with a gas-liquid separator to minimize the116

impact of anode flooding on fuel cell performance. To further investigate the117

internal processes of the fuel cell, an AC impedance test is conducted using a118

KIKUSUI fuel cell impedance meter, which operates over a frequency range119

of 10 mHz to 20,000 Hz.120

2.2. Experimental procedure121

To obtain output voltage data under various working conditions, the con-122

trol variable method is applied in the experimental design process. Standard123

operating conditions are set at 70 °C, 90% RH, 1 bar pressure, with a stoi-124

chiometry of 1.5 for the anode and 3 for the cathode. During each sensitivity125

test, single operating condition is changed to a preset value, while all other126

conditions remain at the standard settings. The parameter settings for each127

test condition are detailed in Table 1. After altering a single test variable,128
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the voltage is recorded once the fuel cell stabilized for 15 minutes. Addi-129

tionally, in constant current mode, electrochemical impedance spectroscopy130

(EIS) data are collected with 8% AC perturbation, and the measurement131

frequency ranges from 0.1 to 20,000 Hz with 10 points per decade. All con-132

ditions are measured at different current density levels of 200, 400, 600, and133

800 mA/cm2. To ensure consistent results, the fuel cell is stabilized for 20134

minutes prior to each test.135

Table 1: Different operating conditions

Parameters Standard values Values

Stack temperature (°C) 70 40, 50, 60, 70, 80

Humidity (%) 90 40, 50, 60, 70, 80, 90, 100

Pressure (kPa) 0 0, 50, 75, 100, 125

Cathode stoichiometry 3 2.0, 2.5, 3.0, 3.5

Anode stoichiometry 1.5 1.5, 2.0, 2.5, 3.0

2.3. DRT method136

Impedance Spectroscopy is a powerful tool used to investigate the elec-137

trical properties of materials and electrochemical systems. Distribution of138

Relaxation Times technology is a sophisticated data analysis method ap-139

plied in impedance spectroscopy. The key idea of DRT is that the response140

of a fuel cell system can be viewed as the sum of many individual relaxation141

processes, each characterized by a different time constant. the impedance142

Z(w) at given frequencies can be calculated in the following expression [31]:143

Z(w) = R0 +Rpol

∫ ∞

0

g (τ)

1 + jwτ
dτ , (1)

where R0 is ohmic impedance, Rpol is the polarization resistance, g(τ) is144

the distribution function that reveals the contribution of different processes145

with relaxation time τ . Logarithmic coordinates are often used in practical146

applications, so the Eq.1 can be written as:147

Z(w) = R0 +Rpol

∫ ∞

0

γ (lnτ)

1 + jwτ
dlnτ (2)
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where γ (lnτ) = g (τ).148

The method for calculating the DRT in this study primarily utilizes ridge149

regression and a pseudo-spectral algorithm using radial basis functions [32].150

The EIS data must be validated for linearity, time-invariance, and causality151

using the Kramers-Kronig relations to ensures the reliability and accuracy152

of the impedance spectra measurements [33]. The difference ∆ between the153

fitted model and the measured data can be used to assess the reproducibility154

of the measured impedance spectrum:155

∆Re(ω) =
ZRe (ω)− Z ,

Re

|Z (ω)|
; (3)

156

∆Im(ω) =
ZIm (ω)− Z ,

Im

|Z (ω)|
, (4)

where ZRe (ω) and ZIm are the real and imaginary parts of the impedance,157

respectively. Z ,
Re and Z ,

Im are the real and imaginary parts of the fitted158

impedance, respectively. |Z (ω)| is the real part of the impedance, respec-159

tively. ω is the angle frequency.160

3. RF-SOBOL method161

3.1. Random forest regression162

Random Forest Regression is an ensemble learning technique used for163

both regression and classification tasks [34]. It combines the predictions of164

multiple decision trees to improve predictive performance and control overfit-165

ting. The performance of fuel cells can be well predicted using the Random166

Forest Regression algorithm, and the influence of each input feature on the167

output can also be extracted effectively.168

For a given dataset D = {(xi, yi)}Ni=1 where xi is the feature vector, and169

yi is the target value for the i
th data point, the algorithm generates multiple170

bootstrapped samples from the training data. A bootstrapped sample is cre-171

ated by sampling N data points with replacement from the original dataset.172

Db represent the bth bootstrapped dataset.173

For each bootstrapped datasetDb, a decision tree is trained. This involves174

recursively splitting the dataset into subsets. At each node of the tree, the175

algorithm randomly selects a subset of features F ′ from the full set of features176

F and then chooses the best feature and threshold for splitting based on a177
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Figure 2: Fuel cell stack and testing equipment

criterion that minimizes the variance in the target values. In regression, the178

variance reduction criterion is used:179

Var

(
Db

)
=

1

|Db|
∑

(xi,yi)∈Db

(yi − ȳ)2 , (5)

where ȳ is the mean of the target values in subset Db.180

Once all trees are grown, the Random Forest model is ready to make181

predictions. For a new input x, the prediction is made by averaging the182

predictions of all individual trees:183

ŷ =
1

B

B∑
b=1

hb (x), (6)

where B is the total number of trees in the forest, and hb (x) is the prediction184

from the bth tree for input x.185

Finally, the algorithm framework is shown in Figure 2.186

3.2. SOBOL index187

The Sobol Index is a measure used in global sensitivity analysis to quan-188

tify the contribution of each input parameter to the variance of the model189

output [35]. It is used to understand how the uncertainty in each input190

affects the uncertainty of the output in complex models. Assume a model191
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f(X) where X = (X1, X2, . . . , Xk) are k input variables, and the model out-192

put Y = f(X) depends on these inputs. The Sobol index is a variance-based193

method that decomposes the total output variance Var(Y) into fractions194

attributed to individual input variables and their interactions:195

V (Y) =
k∑

i=1

Vi +
∑

1≤i<j≤k

Vij +
∑

1≤i<j<l≤k

Vijl + · · ·+ V12···k, (7)

Where Vi is the variance contribution of the direct effect of the Xi input196

variables, and Vij is the variance contribution from the interaction between197

the input variables Xi and Xj. The three main indexes used in this article198

are as follows.199

First-order Sobol index Si: Direct contribution of Xi to output variance200

Si =
Vi

Var(Y)
; (8)

Second-order Sobol index Sij: Interaction contribution of Xi and Xj201

Sij =
Vij

Var(Y)
; (9)

Total Sobol index STi
: Total contribution of Xi, including all interactions202

with other variables203

STi
= 1− V∼i

Var(Y)
, (10)

where V∼i is the variance of the output when Xi is fixed.204

3.3. RF-Sobol-DRT method205

A fuel cell voltage prediction model based on random forest regression is206

established using the output voltage of the fuel cell under different operating207

conditions obtained from experiments. The model inputs include current,208

pressure, stack temperature, humidity, and stoichiometry of anode and cath-209

ode, with the output being the voltage. RF operates by constructing multiple210

decision trees during training and outputting mean prediction of the individ-211

ual trees. Its performance largely depends on the proper tuning of several212

adjustable parameters, which can significantly impact its accuracy, general-213

ization capability, and computational efficiency. The key parameters include214

the number of estimators, maximum depth, minimum number of samples215
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required to split an internal node, minimum number of samples required to216

be at a leaf node, and maximum number of features considered for splitting.217

In this experiment, all input features are required, and thus the maximum218

number of features is set to include all available features for regression. The219

default values for the number of estimators, maximum depth, minimum num-220

ber of samples required to split an internal node, and minimum number of221

samples required to be at a leaf node are set to 100, 10, 2, and 1, respectively.222

The mean squared error (MSE) and regression coefficient R2 obtained from223

testing when adjusting the number of estimators to 10, 30, 50, 70, 100, 150,224

200, and 300 are shown in Table 2.225

Table 2: MSE and R2 for different numbers of estimators

Est 10 30 50 70 100 150 200 300

MSE 0.00848 0.00816 0.00815 0.00860 0.00848 0.00839 0.00852 0.00883

R² 0.93339 0.93585 0.93591 0.93237 0.93338 0.93407 0.93307 0.93062

It can be observed that the model performs best when the number of226

trees is set to 50, achieving the lowest prediction error and the highest corre-227

lation. Further increasing the number of trees does not improve the model’s228

performance; instead, it reduces computational efficiency. The MSE and R2
229

obtained from testing by adjusting the maximum depth to 5, 10, 15, 20, and230

25 are shown in Table 3.231

Table 3: MSE and R2 for different maximum depths

Max Depth 5 10 15 20 25

MSE 0.009306 0.008481 0.008431 0.008431 0.008431

R2 0.926906 0.933389 0.93378 0.93378 0.93378

By adjusting the maximum depth of each tree, it is observed that as the232

depth increases, the prediction accuracy improves and the error decreases,233

reaching its peak at a depth of 15. Further increasing the tree depth does234

not enhance model performance and instead increases the risk of overfitting.235

Therefore, a depth of 15 is the optimal value for this dataset. The MSE and236

R² obtained from testing by adjusting minimum number of samples required237

to split an internal node to 2, 4, 6, 8, 10 and minimum number of samples238

required to be at a leaf node to 1, 2, 3, 4, 5 are shown in Table 4.239
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Table 4: MSE and R2 for different minimum samples required to split and minimum
samples required at leaf nodes.

Split samples 2 4 6 8 10

MSE 0.008481 0.008602 0.008858 0.00911 0.009644
R2 0.933389 0.93244 0.930428 0.928449 0.924256

Min. samples 1 2 3 4 5

MSE 0.008481 0.013395 0.013354 0.01326 0.013217
R2 0.933389 0.894796 0.895111 0.895849 0.896193

These two relatively large values will force the tree to generalize more,240

preventing model overfitting, but will significantly reduce the model’s pre-241

diction accuracy. It can be observed that the minimum values of 2 and 1242

are more appropriate for the given requirements. Through comparison, the243

optimal regression model parameters were determined to be 50, 15, 2, and 1,244

at which point the MSE = 0.811 and R2 = 0.936.245

The RF regression model effectively captures the steady-state behavior246

of fuel cells during actual operation, providing a solid foundation for global247

sensitivity analysis. In this study, the RF-Sobol index method was employed248

to further quantify the impact of key operational conditions, including fuel249

cell stack temperature, humidity, back pressure, cathode stoichiometry, and250

anode stoichiometry, on output voltage. To gain deeper insights into the251

mechanisms by which each operational condition influences output voltage,252

the Distribution of Relaxation Times (DRT) method was used to analyze the253

effects of these conditions on internal impedance and kinetic processes. This254

comprehensive approach completes the analysis chain from qualitative assess-255

ment to quantitative evaluation, culminating in mechanistic understanding.256

The specific methodological workflow is illustrated in Figure 3.257

4. Discussion258

The following sections systematically analyze the effects of operating con-259

ditions (incl. stack temperature, humidity, back pressure, and stoichiometry260

of anode and cathode) on the output performance of the fuel cell from qual-261

itative, quantitative, and mechanistic perspectives. This analysis reveals the262

trends, weighting, and underlying mechanisms by which each operating con-263

dition impact the output voltage during actual fuel cell operation, providing264

comprehensive insights for a global sensitivity analysis of fuel cells.265
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Figure 3: RF-Sobol-DRT method flow chart.

4.1. Qualitative sensitivity analysis266

The output voltage under various operation conditions is obtained by267

experimental testing of control variables, and the RF model is used to perform268

integrated learning on the data to obtain the predicted values of the output269

voltage under different operating conditions as shown in Figure 4. The red270

line is the test result.271

From the variations in the red lines in Figure 4 (a1), (b1), (c1), and (d1),272

it is evident that the output voltage of the fuel cell increases rapidly with ris-273

ing stack temperature during the experiment. However, the rate of increase274

gradually slows as the stack temperature continues to rise, reaching a peak275

at approximately 60 70°C, followed by a slight decline as the stack tempera-276

ture further increases to 80°C. This trend is observed across different current277

densities, with the distinction that the stack temperature at which the inflec-278

tion point occurs decreases as the current density increases. RF prediction279

model effectively captures the relationship between fuel cell output voltage280

and stack temperature at various current densities. At 600 mA/cm2, the281

effect of stack temperature on the output voltage exhibits minimal fluctua-282

tion, except for the lower output voltage observed at 40 °C. The RF model283
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Figure 4: Scatter plot of RF prediction and measured output voltage curves for each
operating condition: (a) 200mA/cm2 ; (b) 400mA/cm2 ; (c) 600mA/cm2 ; (d) 800mA/cm2.

reinforces these characteristics, leading to a weak correlation between stack284

temperature and output voltage in the scatter plot, which results in a certain285

degree of deviation. From the Figure 4 (a2), (b2), (c2), and (d2), it can be286

observed that as humidity increases, the proton exchange membrane becomes287

more hydrated, resulting in a slight rise in the output voltage. Optimal fuel288

cell performance is observed at a humidity level of 80–90%, while a slight289

decrease in output voltage occurs when humidity increases to 100%. This290

reduction may be attributed to over-humidified gas, which can condense into291

liquid water, leading to localized flooding and decreased fuel cell performance.292

The trend in humidity’s impact on the fuel cell remains relatively consistent293

across different current densities. Additionally, the scatter plot generated294

by the RF model effectively captures these relevant trends. From Figure 4295

(a3), (b3), (c3), and (d3), it is observed that as back pressure increases, the296
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partial pressure of the reactant gases rises, accelerating the reaction rate and297

leading to a continuous increase in the output voltage, which peaks at ap-298

proximately 50 kPa. However, when the back pressure is further increased,299

the output voltage begins to decline, and at around 100 kPa, it matches the300

output voltage observed with no back pressure. If the back pressure is in-301

creased beyond this point, the output voltage decreases rapidly. The scatter302

plot demonstrates that the RF model accurately captures this trend. In Fig-303

ure 4 (a4), (b4), (c4), and (d4), the output voltage is shown to be positively304

correlated with the cathode stoichiometry. However, as the stoichiometric305

ratio increases, the gas supply becomes sufficient, causing the rate of voltage306

increase to slow. At higher current densities, the demand for gas supply rises,307

and the cathode stoichiometric ratio continues to have a growing impact on308

output voltage. The RF model captures this behavior well, though a slight309

deviation is observed in Figure 4 (b4), similar to the one seen in Figure 4310

(c1). In Figure 4 (a5), (b5), (c5), and (d5), it is evident that at low and311

medium current densities, the anode stoichiometry has minimal effect on the312

output voltage. As the current density increases, the demand for reactant313

gases rises, and the overall trend becomes slightly positively correlated. The314

scatter plot generated by the RF model also exhibits smooth fluctuations.315

To further understand the RF model’s learning performance for fuel cells316

under different operating conditions, ICE plots (Figure 5) are generated to317

illustrate the impact of each feature on the model output. As shown in Figure318

5 (a), current is the primary factor influencing fuel cell output, with different319

current density regions exhibiting distinct characteristics. Figures 5 (b), (c),320

and (d) show that the RF model effectively captures the nonlinear effects321

of stack temperature, humidity, and back pressure on output voltage, where322

the voltage initially increases with the operating conditions but then slows323

down and even decreases slightly. Additionally, fluctuations become more324

pronounced with increasing current density. Figures 5 (e) and (f) indicate325

that the RF model accurately learned the positive correlation between an-326

ode and cathode stoichiometry ratios and the output voltage. However, in327

cases of significant deviations, such as low stack temperatures or low cathode328

stoichiometry ratios, the model does not perform as well in identifying the329

feature’s impact. Overall, the RF model successfully captured the actual330

trends and nonlinear relationships between fuel cell output voltage and the331

various operating conditions.332
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Figure 5: RF model of output voltage under various operating conditions: (a) Current;
(b) Stack Temperature; (c) Humidity; (d) Back pressure; (e) Cathode Stoichiometry; (f)
Cathode Stoichiometry.

4.2. Globol sensitivity quantitative analysis333

In the previous section, a qualitative analysis examines the effects of334

varying operating conditions on output voltage. Certain operating conditions335

show a significant influence, with fluctuations exceeding 20% of the output336

voltage. This section provides the quantitative results of a sensitivity analysis337

for each operating condition, utilizing a RF model combined with the Sobol338

index method. Figure 6(a) displays a polarization curve for the fuel cell339

stack. The output voltage is primarily determined by the current density,340

which aligns with prior studies. Once a fuel cell system is assembled, the341

output voltage at a given current density remains stable, with variations in342

operating conditions causing fluctuations around this value. Under extreme343

operating conditions, such as flooding or gas starvation, the output voltage344

experiences a sharp decline due to system malfunction.345

The RF model not only enables learning from the input features but also346

quantifies the contribution of each feature to the prediction model during347
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Figure 6: Effect of operating conditions on the polarization curve, (b) Contribution of
operating conditions to RF model prediction.

the decision tree construction process. Figure 6(b) presents a pie chart il-348

lustrating the contribution of each feature to the prediction model. Current349

density is the dominant factor, accounting for 93.9% of the predicted output350

voltage, while operating conditions contribute 6.1%. It is important to note351

that this 6.1% represents the average contribution across all operating condi-352

tions, rather than the specific impact under a given current density. In actual353

operation, the higher the current density, the more sensitive the fuel cell is354

to changes in operating conditions. Therefore, for fuel cell systems operating355

at high current densities, the efficiency improvements resulting from opti-356

mizing operating conditions will significantly exceed 6%. A more detailed357

breakdown of the operating conditions shows that the contributions of stack358

temperature, humidity, backpressure, cathode stoichiometry, and anode sto-359

ichiometry are 20.9%, 7.2%, 29.8%, 34.2%, and 7.9%, respectively. The RF360

model provides preliminary insights into the overall system behavior, align-361
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Figure 7: Sobol index results at different current densities: (a) 200mA/cm2 ; (b)
400mA/cm2 ; (c) 600mA/cm2 ; (d) 800mA/cm2.

ing with the observed performance of fuel cells. However, it does not offer362

a detailed quantification of the influence of operating conditions on output363

voltage under fixed current densities. To achieve this, further analysis using364

the Sobol index method quantifies the effects of each operating condition365

under different current density scenarios.366

Global sensitivity analysis is commonly used for input analysis in models,367

but it often requires a large amount of data, making it impractical for exper-368

imental purposes. To address this, the RF model is being used to simulate369

the output voltage trends of fuel cells under different operating conditions.370

Combined with the Sobol index method, this innovative approach enables371

global sensitivity analysis under experimental conditions. The Sobol index372

quantifies the influence of inputs by measuring accumulated variance, mean-373

ing that extreme operating conditions, which introduce higher variance, can374
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amplify the impact of certain factors and lead to results deviating from real-375

world observations. Therefore, selecting a reasonable input range is crucial.376

Since the RF model performs poorly in predicting extreme conditions, the377

outliers identified in Figure 4 are discarded. The selected ranges for Sobol378

index calculations are 50–80°C for stack temperature, 40–100% for humidity,379

0–100 kPa for back pressure, 2.5–3.5 for cathode stoichiometry ratio, and380

1.5–3 for anode stoichiometry ratio. These ranges correspond to optimal fuel381

cell operation with minimal impact from faults. The calculation results are382

shown in Figure 7.383

According to Figure 7(a), at a low current density of 200 mA/cm2, the384

primary factors influencing fuel cell performance are humidity, back pressure,385

and stack temperature, with first-order Sobol indices (S1) of 40.2%, 28.4%,386

and 11.7%, respectively. At this low current density, the fuel cell operates387

with relatively ample gas supply and is more sensitive to internal changes388

in humidity, back pressure, and stack temperature. The total Sobol indices389

(ST) for humidity, back pressure, and stack temperature are 49.4%, 33.2%,390

and 17.4%, respectively. The differences between S1 and ST indicate signifi-391

cant interaction effects between operating conditions. The influence of anode392

and cathode stoichiometry ratios is much lower, at 7.3% and 1.1%, respec-393

tively. As the current density increases to 400 mA/cm2, shown in Figure 7(b),394

humidity, back pressure, and stack temperature remain the key influencing395

factors, contributing 29.2%, 22.7%, and 26.2%, respectively. However, the396

influence of humidity decreases, while stack temperature’s impact increases397

significantly. The contribution of anode and cathode stoichiometry ratios398

also increases but remains below 10%. At this intermediate current density,399

fuel cells still require lower gas supply, and humidity and stack tempera-400

ture play a significant role. However, as the current density increases, the401

influence of stack temperature and humidity diminishes, while the effects402

of back pressure and stoichiometry ratios grow. The gradually decreasing403

difference between S1 and ST indicates a reduction in the synergistic ef-404

fect between the operating conditions. At 600 mA/cm2, Figure 7(c) shows405

that the cathode stoichiometry ratio and back pressure become the domi-406

nant factors, contributing 69% and 19.5%, respectively, while the influence407

of stack temperature and humidity drops below 8%. Further increasing the408

current density, as shown in Figure 7(d), makes the cathode stoichiometry409

ratio the most critical factor, accounting for over 70% of the total influence,410

with all other operating conditions contributing less than 10%. This shift is411

due to the higher gas supply demand at elevated current densities, especially412
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Figure 8: Principle of EIS conversion to DRT and interpretation of DRT Peaks.

for the cathode reaction, which is the rate-limiting step in fuel cell perfor-413

mance. Consequently, changes in the cathode stoichiometry ratio become414

increasingly important. The diminishing influence of stack temperature and415

humidity at higher current densities may be associated with internal heat416

and water production within the fuel cell stack.417

In conclusion, when operating at low to moderate current densities, op-418

timizing thermal and water management is crucial for fuel cell performance.419

As the current density increases, the focus should shift toward managing the420

air supply, particularly by monitoring changes in the cathode stoichiometry421

ratio, to ensure sufficient reactant supply and optimal performance.422

4.3. Sensitivity analysis of internal mechanisms423

The impedance results from the EIS test, as shown in Figure 8, typi-424

cally require a comprehensive understanding of electrochemical impedance425

principles and are sensitive to the choice of initial parameters used in equiv-426

alent circuit modeling. In contrast, the Distribution of Relaxation Times427

offers a model-free approach for direct impedance analysis, providing valu-428

able insights into the underlying dynamics Based on the K-K validation,429

the measurement error of the impedance is less than 1%, which meets the430

requirements for DRT transformation.431
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Figure 9: Impact of operation conditions on P1, P2, and P3 peaks in DRT under low
current density: (a) Humidity, (b) Backpressure, (c) Stack Temperature, (d) Cathode
Stoichiometry, and (e) Anode Stoichiometry.

The DRT analysis results are shown on the right side of Figure 8, reveal-432

ing three primary peaks. The first peak appears around 10 Hz and is mainly433

associated with mass transport on the cathode side of the fuel cell. This434

prominent peak indicates the tested fuel cell is highly sensitive to changes435

in mass transport. The second peak, observed near 100 Hz, is related to the436

electrochemical reactions occurring at the cathode. The third and smallest437

peak, around 1000 Hz, corresponds to proton transport. These conclusions438

have been confirmed in several studies, supporting further interpretation of439

the sensitivity of fuel cell operating conditions. As shown in Figure 7, the440

relevant changes are mainly concentrated at current densities of 200 and 600441

mA/cm², where the impedance spectra data are most reliable with mini-442

mal noise. Therefore, the discussion focuses on the DRT results under these443

current density conditions. By comparing the effects of various operating444

conditions on the DRT peaks, the intrinsic mechanism underlying the sen-445

sitivity of the fuel cell to different operating conditions at varying current446

densities is analyzed.447

As shown in Figure 9, by examining the impact of various parameters on448
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the three characteristic peaks (P1, P2, P3) of DRT, a deeper understanding449

is gained regarding each parameter’s effect on gas diffusion, cathode reaction450

kinetics, and proton transport. When comparing the changes in P1 and P2451

peaks in Figure 9, humidity exhibits the most pronounced impact on fuel452

cell performance. The results indicate that increasing RH from 40% to 70%453

significantly reduces the P1 peak from approximately 15 Ω · cm2 to around454

8 Ω · cm2, showing a more pronounced effect compared to other operating455

conditions. This is consistent with the conclusion in Figure 7(a). This reduc-456

tion indicates that as gas humidity increases, the proton exchange membrane457

and catalyst layer become hydrated, positively impacting the formation of458

internal transport pathways and enhancing catalyst activity. However, when459

humidity exceeds 70%, both P1 and P2 peaks begin to rise again. This sug-460

gests that excessive humidity can lead to water flooding, where liquid water461

accumulation in the gas diffusion and catalyst layers obstructs reactant gas462

transport.463

Back pressure is another key factor influencing fuel cell performance, with464

a clear impact on all three characteristic peaks. As back pressure increases465

from 0 to 50 kPa, both P1, P2, and P3 peaks drop significantly in Figures466

9(b1), 9(b2), and 9(b3). This indicates the partial pressure of the reactant467

gases rises, which improves gas diffusion efficiency and increases reactant468

concentration. Consequently, the overall performance of the fuel cell is en-469

hanced. However, when the back pressure is further increased beyond 75470

kPa, both P1 and P2 peaks start to rise again. As observed in Figures 9(b1),471

9(b2), and 9(b3), the P1 peak significantly increases from 7 Ω · cm2 to 14472

Ω · cm2, while the P2 and P3 peaks return to their levels seen under no back473

pressure. This rise indicates that excessive back pressure can lead to issues474

with gas diffusion, particularly in the GDL and catalyst layers. High back475

pressure can hinder the removal of water from the GDL, exacerbating water476

flooding and leading to increased diffusion resistance. Additionally, the in-477

creased pressure may cause compression of the porous layers, reducing gas478

permeability and further impeding gas transport to the catalyst sites.479

Comparing Figures 9(b1) and 9(c1), the P1 peak shows a similar trend480

with stack temperature variations as it does with back pressure, but the neg-481

ative effects of increasing stack temperature are relatively weaker, resulting482

in a more gradual change compared to back pressure. Additionally, from the483

comparison of the P2 peak in Figure 9, it is observed that when the stack484

temperature exceeds 60°C, the P2 peak remains almost unchanged. This485

further validates the accuracy of the RF-Sobol method. As stack temper-486
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ature increases from 40°C to 70°C, both P1 and P2 peaks decrease. This487

shift indicates accelerated reaction kinetics at higher stack temperature, as488

the increased thermal energy promotes faster charge transfer reactions and489

enhances the activity of the catalysts. The reduction in impedance in both490

the low- and mid-frequency ranges reflects improved ORR kinetics and gas491

diffusion rates at elevated stack temperature. In Figures 9(c1) and 9(c2),492

when the temperature exceeds 70°C, the P1 and P2 peaks begin to rise again,493

suggesting that there is a threshold for the improvement of fuel cell output494

voltage with increasing stack temperature. When this threshold is exceeded,495

stack temperature starts to have adverse effects, likely due to the drying of496

the gas diffusion layer at higher stack temperature, which leads to insuffi-497

cient local gas supply and a reduction in the oxygen reaction rate. In Figure498

9(c3), the P3 peak shows a continuous decline as stack temperature increases,499

indicating enhanced proton transport at higher stack temperatures. This is500

consistent with the expectation that increased thermal energy reduces the501

resistance to proton movement through the hydrated membrane, thereby502

improving proton conductivity.503

As shown in Figures 9(d1), 9(d2), and 9(d3), the P1 peak decreases with504

an increasing cathode stoichiometric ratio, while the P2 and P3 peaks show505

minimal changes, indicating improved gas diffusion and reaction kinetics due506

to the increased availability of oxygen at the cathode catalyst sites. However,507

because the fuel cell operates at low current density and thus has a lower508

demand for reactant gases, the fluctuations in peak values with respect to the509

cathode stoichiometric ratio are less pronounced compared to those observed510

with changes in stack temperature and back pressure. Comparing Figures511

9(d1) and 9(e1), as well as 9(d2) and 9(e2), it is evident that changes in the512

anode stoichiometric ratio have a much smaller impact on the P1 and P2513

peaks compared to the cathode stoichiometric ratio. This is expected, as the514

cathode reaction is the rate-determining step in fuel cell performance.515

As mentioned earlier, with increasing current density, the fuel cell stack’s516

demand for reactant gases rises. As shown in Figure 7(c), the influence of517

gas supply-related operating conditions becomes more significant, with the518

cathode stoichiometric ratio and back pressure emerging as the primary influ-519

encing factors. This is further confirmed in Figure 10. Compared to Figure520

9, the P1 peak rises significantly by approximately 5 Ω · cm2, indicating a521

substantial increase in mass transport resistance. At this stage, the cathode522

stoichiometric ratio becomes the dominant factor. As shown in Figures 9(a1)523

and 9(a2), increasing the cathode stoichiometric ratio leads to a marked re-524
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Figure 10: Impact of operation conditions on P1, P2, and P3 peaks in DRT under low
current density: (a) Cathode Stoichiometry, (b) Backpressure, (c) Humidity, (d) Anode
Stoichiometry and (e) Stack temperature.

duction in the P1 peak from around 21 Ω · cm2 to 10 Ω · cm2, a change525

far greater than that observed for other operating conditions. Meanwhile,526

the P2 peak shows a slight decrease. This explains the approximately 70%527

contribution of the first-order Sobol index, as increasing the cathode stoi-528

chiometric ratio not only facilitates mass transport but also enhances the529

cathode reaction rate.530

As seen in Figures 9(b1) and 9(b2), with the increase in back pressure531

to 50 kPa, the P1 peak decreases significantly, from 16 Ω · cm2 to 7 Ω · cm2,532

while the P2 peak shows a slight decline. This pronounced reduction in the533

P1 peak can be attributed to the increased partial pressure of the reactant534

gases, particularly oxygen at the cathode. Higher back pressure raises the535

gas concentration, which improves diffusion through the GDL and enhances536

the availability of oxygen at the catalyst sites. The slight reduction in the P2537

peak is likely due to the enhanced reaction kinetics resulting from improved538

oxygen concentration at the catalyst, which facilitates faster charge transfer539

processes. The benefits of increasing back pressure eventually diminish as540

its adverse effects—such as water flooding and increased gas diffusion resis-541
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tance—begin to outweigh the advantages. This leads to an increase in all542

peaks, particularly P1.543

As shown in Figures 10(c1), 10(c2), 10(e1), and 10(e2), the effects of544

humidity and stack temperature variations on the P1 and P2 peaks are rel-545

atively gradual compared to the impact of back pressure. The influence of546

stack temperature and humidity on the P1 peak is less pronounced at higher547

current densities than it is at lower current densities. This can be attributed548

to the increased water and heat generation inside the fuel cell at elevated549

current densities, which helps maintain a more stable internal water-heat550

balance. As a result, the fuel cell’s sensitivity to external variations in stack551

temperature and humidity decreases.552

In Figures 10(d1) and 10(d2), the impedance is higher at lower anode553

stoichiometry ratios, but as the anode stoichiometry increases, the P1 and554

P2 peaks decrease and then level off. The effect of the anode stoichiometry555

ratio on fuel cell performance is relatively straightforward: while increasing556

the anode stoichiometric ratio reduces gas transport resistance and slightly557

improves output, the overall effect is not as significant as other operating pa-558

rameters. Since the hydrogen reaction kinetics are typically not rate-limiting559

under typical operating conditions, further increases in the anode stoichiome-560

try beyond an optimal point yield little additional performance improvement.561

Additionally, as observed in Figure 10, the P3 peak remains largely un-562

changed under various operating conditions. This indicates that proton563

transport has reached a stable and optimal state, with minimal susceptibility564

to external disturbances such as changes in humidity, stack temperature, or565

gas supply. The stability of the P3 peak suggests that proton conductivity566

within the membrane is well-maintained, likely due to sufficient membrane567

hydration and proper water management, which ensures consistent proton568

transport across a wide range of conditions.569

5. Conclusion570

In conclusion, the study provides a comprehensive evaluation of the im-571

pact of key operating conditions—temperature, humidity, backpressure, and572

stoichiometry—on fuel cell performance using an innovative combination of573

Random Forest, Sobol sensitivity analysis, and DRT. This work yields the574

following conclusions:575

1. The output voltage of the fuel cell shows an initial increase and subsequent576

decrease as stack temperature, humidity, and backpressure increase. The577
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optimal fuel cell performance is observed at a stack temperature of around578

70°C, humidity of approximately 90%, and a backpressure of 50 kPa. The579

output voltage exhibits a strong positive correlation with cathode stoi-580

chiometry, while the effect of anode stoichiometry on output voltage is581

relatively small.582

2. The Sobol sensitivity analysis reveals that at low current densities, fuel583

cell performance is primarily influenced by temperature, humidity, and584

backpressure, with their contributions being 15–25%, 30–40%, and ap-585

proximately 30%, respectively. There is also significant interaction be-586

tween operating conditions. As current density increases, the demand for587

gas supply rises, making cathode stoichiometry and backpressure the dom-588

inant factors. Particularly, the impact of cathode stoichiometry exceeds589

70% as current density increases.590

3. Mechanistic analysis shows that the fuel cell used in this study is predom-591

inantly influenced by mass transport impedance. At low current densities,592

the fuel cell is significantly affected by water-thermal balance and the es-593

tablishment of transport pathways, as gas demand is lower. At higher594

current densities, the increased production of water and heat reduces sen-595

sitivity to changes in stack temperature and humidity, while gas supply-596

related factors, such as cathode stoichiometry and backpressure, become597

more dominant.598
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